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Protein-ligand interactions play an important role in a variety
of biological processes. To characterize these interactions at the
molecular level, nuclear magnetic resonance (NMR) spectroscopy
has become a valuable tool. NMR structures of proteins com-
plexed to small organic molecules,1 nucleic acids,2 peptides, and
other proteins3 have yielded a wealth of information on the
important determinants of molecular recognition. However, high-
resolution NMR structure determination of protein/ligand com-
plexes is a tedious and time consuming process due to the large
amount of data that must be analyzed. Moreover, structures of
many interesting systems cannot be obtained due to solubility
limitations, unfavorable dynamics, or signal overlap. In contrast,
the approximate binding site location is routinely obtained by
NMR from a comparison of the chemical shifts of the free versus
complexed protein4 and can be determined even for large
molecular assemblies.5 Although this chemical shift perturbation
approach is useful for quickly identifying general sites of
interaction, no information on the orientation of the ligand in the
binding site is obtained. Furthermore, the interpretation of the
chemical shift changes upon ligand binding can be complicated
by ligand-induced conformational changes of the protein.6-8

Here we describe a simple chemical shift based technique for
rapidly determining the precise location of the ligand binding site
and the orientation of the ligand in the binding pocket. This
approach involves the comparison of chemical shift changes of a
protein induced by a series of closely related ligands. Using this
method, the region of the binding site that is proximal to the

portion of the ligand that differs within the series is readily
identified from localized shielding differences of the protein. By
comparing the chemical shift changes caused by ligands with
minor chemical alterations in different parts of the molecule, the
ligand may be docked into the binding pocket.

To demonstrate the utility of this approach for characterizing
the structure of protein/drug complexes, the chemical shift changes
of the FK506 binding protein (FKBP) were analyzed upon the
addition of a series of potent FK506 analogues.9 The chemical
shift mapping typically employed to examine such interactions
would involve a comparison of the shifts for free and bound
FKBP. As shown in Figure 1a, most (>90%) of the FKBP signals
change upon the addition of an FK506 analogue, ascomycin,
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Figure 1. Schematic representation of the protein differential1H, 13C,
15N NMR chemical shifts for the FKBP-ascomycin complex compared
to (a) free FKBP, (b) FKBP/31-keto-32-desoxy-ascomycin, (c) FKBP/
24-desoxy-ascomycin, and (d) FKBP/FK506. The differential chemical
shifts of the Bcl-xL/Bak 16mer peptide complex are compared to (e) free
Bcl-xL, (f) Bcl-xL/V307A Bak mutant, (g) the Bcl-xL/R320A Bak mutant,
and (h) Bcl-xL/G315A Bak mutant. The ligands are shown in yellow with
the specific position of the ligand’s chemical mutation highlighted in red.
Atoms which exhibit significant differential chemical shifts are shown
as blue spheres. The diameter of each sphere is directly proportional to
the magnitude of the chemical shift differences in the range from 0.15 to
0.65 ppm for13C and15N nuclei and from 0.03 to 0.13 ppm for1H nuclei,
respectively. Shifts smaller than the lower limit are not indicated, and
those exceeding the upper limit are represented by the same maximum
sphere size.
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making it difficult to even identify the binding pocket and
impossible to orient the ligand.10 In contrast, by analyzing the
differential chemical shifts observed for a series of closely related
ascomycin analogues, the region of the binding pocket that is
near the altered portion of the ligand is easily identified (Figure
1b,c). For example, by comparing the chemical shifts of the
FKBP/ascomycin complex to those of FKBP/32-desoxy-31-keto-
ascomycin, the cyclohexyl ring of ascomycin can be shown to
bind in the vicinity of Y82 (Figure 1b). Similarly, the localized
chemical shift differences of residues 51-56 indicate the binding
site location of the hydroxyl group at carbon 24 of ascomycin
from a comparison with 24-desoxy-ascomycin (Figure 1c). As
shown in Figure 1d, no chemical shift perturbations are observed
when the ethyl group of ascomycin is replaced by an allyl moiety
(FK506). These results suggest that this group is pointing away
from the binding pocket, consistent with the previously determined
structures of FKBP/ascomycin and FKBP/FK50611 complexes.
This information is useful for identifying regions of small
molecules that may be altered to improve their pharmacokinetic
properties without affecting binding affinity.

The differential chemical shift method can also be used to
characterize protein/peptide and protein/protein interactions. This
is illustrated for the binding of the anti-apoptotic protein Bcl-xL

to a 16mer peptide derived from the pro-apoptotic protein Bak.12,13

As in the case with FKBP, information on the binding topology
cannot be obtained from an analysis of the chemical shift
differences between free and bound Bcl-xL (Figure 1e). However,
specific and spatially localized chemical shift perturbations were
observed with different Bcl-xL/Bak complexes formed with

alanine mutant Bak peptides. For example, an alanine mutation
near the N-terminal portion of the peptide (V307A) caused
significant changes only in the spatially proximal residues V130
and D111 of Bcl-xL when compared with the Bcl-xL/BAK
complex (Figure 1f). Conversely, the R320A mutant located at
the C-terminal end of the peptide caused significant differences
for residues E206, A205, F195, W141, and G142 on the opposite
side of the binding pocket (Figure 1g). A mutation in the middle
of the Bak peptide (G315A) caused changes in the middle of the
binding site (Figure 1h). These results suggest that using only
the differential chemical shift information, the binding site and
binding orientation of the Bak 16mer can be reliably determined.

Protein differential chemical shift observations between a series
of related ligands allow the binding pocket to be reliably mapped
and the orientation of the ligand to be defined. Thus, this method
can be used to rapidly determine how a series of small organic
compounds bind to proteins. This information will be useful for
structure-based drug design, especially in cases where conven-
tional methods for structure determination fail. In addition, the
differential chemical shift technique may be used to determine
how proteins dock together with other proteins to form molecular
assemblies using a strategy of comparing the chemical shifts
caused by a series of alanine mutations to pinpoint the binding
site locations of the altered residues.14 Due to the recent advances
in isotope labeling15,16 and NMR methods for studying large
biomolecules,17-19 this approach could be used to characterize
the quaternary structure of even very large (>100 kDa) molecular
assemblies.
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